- From the given expression, first observe its form. Then use the appropriate formula and obtain the factors.
- We derive formulae for some products. We are given the product of two factors and we need to find those factors.
Expression Factors
a2 + 2ab + b2 ( a + b) 2
a2- 2ab + b2 ( a - b) 2
a2 - b2 ( a + b ) ( a - b )
a3+ b3 ( a + b ) ( a2 - a b + b2 )
a2 - b2 ( a - b ) ( a2+ a b + b2 )
a3+ 3a2b + 3ab2 + b3 ( a + b )3
a3 - 3a2 b + 3ab2- b3 ( a - b )3
a2+ b2+ c2 + 2ab + 2bc + 2ca ( a+ b + c) 2
a3+ b3 + c3 - 3abc ( a + b + c ) ( a2+ b2 + c2 - a b - b c - ca )
x2+ x (a + b ) + ab ( x + a ) ( x + b )
x3+ x2 ( a + b + c ) ( x + a ) ( x + b ) ( x + c ) + x ( a b + b c + c a ) + abc
Factorize each of the following polynomials
Example 1
x2 + 6x + 9
Solution:
Using the product with a = x, b = 3, we have
x2 + 6x + 9 = ( x + 3) 2
Example 2
1 - 8x + 16x2
Solution:
Using the product with a = 1, b = 4x, we have
1 - 8x + 16x2= ( 1 - 4x) 2
Example 3
4x2 - 81y2
Solution:
Using the product with a = 2x, b = 9y, we have
4x2 - 81y2 = ( 2x) 2 - ( 9y) 2
= ( 2x - 9y ) ( 2x + 9y )
Example 4
x3y3 + 729
Solution:
Using the product with a = xy, b = 9, we have
x3y3 + 729 = (xy)3 + (9)3
= ( xy + 9 ) ( x2y2 - 9xy + 81 )
Example 5
x3 - 6x2+ 12x - 8
Solution:
Using the product with a = x, b = 2, we have
x3 - 6x2+ 12x - 8 = ( x - 2 )3
Example 6
x3 + y3 - z3+ 3xyz
Solution:
Using the product with a = x, b = y, c = -z, we have
x3 + y3 - z3+ 3xyz
= ( x + y - z ) ( x2+ y2+ z2 - xy + yz + zx )
Example 7
n4+ 4
Solution:
n4+ 4 is in the form of a2 + b2, with a = n2, b = 2
n4+ 4 = a2+ b2
= ( a2+ b2+ 2ab ) - 2ab
= ( n4+ 4+ 2n2 (2)) - 2n2(2)
= ( n2+ 22- 4n)2
= (n2 + 22 - (2n)2
which is of the form a2- b2 with a = n2 + 2, b = 2n.
Therefore, ( n2 + 2) 2 - (2n2 = ( n2+ 2n + 2 ) ( n2 - 2n + 2 ).
Therefore, n4 + 4 = ( n2 + 2n + 2 ) ( n2 - 2n + 2 ).
Try these questions
- a2+ 4a + 4
- a4+ 6a2+ 9a
- ( 2x + 3y 2 + 2 ( 2x + 3y ) ( x + y ) + ( x + y 2
- 4a2 - 12ab + 9b2
- 9a2b2 - 6abc + c2
- ( 3x + 2y 2 - 2 ( 3x + 2y ) ( x + y ) + ( x + y) 2
- 4a2 - 9
- 16x2 - 9y2
- a2b2 - c2d2
- 25a2 - 16a
- a4- 1
- (a + b2 - c)2
- a2 - ( b - c) 2
- 4a2 + 4ab + b2 - c2
- a2 - b2 - c2 - 2bc
- a2 - b2 - 4c2 + 4bc
- x4 + 324
- 4a4 + 81
- 3x4 + 12
- x4 + x2 + 1
Answers
- a2 + 4a + 4 = (a2 + 2 (a) (2) + (22
= ( a + 2) 2
- a3+ 6a2+ 9a = a ( a2 + 6a + 9 )
= a [ (a2 + 2 (a) (3) + (3) 2 ]
= a [ a + 3 ]2
- ( 2x + 3y 2 + 2 ( 2x + 3y ) ( x + y ) + ( x + y) 2
Put 2x + 3y = a; x + y = b
Therefore given expression = a2+ 2ab + b2
= ( a + b) 2
= ( 2x + 3y + x + y) 2
= ( 3x + 4y) 2
- 4a2- 12ab + 9b2 = ( 2a )2 + 2 ( 2a ) ( - 3b ) + ( - 3b )2
= ( 2a - 3b )2
- 9a2b2- 6abc + c2
= ( 3ab )2 + 2 ( 3ab ) ( - c ) + ( - c )2
= ( 3ab - c )2
- ( 3x + 2y )2 - 2 ( 3x + 2y ) ( x + y ) + ( x + y )2
This is in the form of a2 - 2ab + b2
Therefore factors = ( a - b )2
i.e., ( 3x + 2y - x - y )2 = ( 2x + y )2
- 4a2 - 9 = ( 2a )2 - (3)2
[Therefore a2 - b2 = ( a + b ) ( a - b ) ]
= ( 2a + 3 ) ( 2a - 3 )
- 16x2- 9y2 = ( 4x )2 - ( 3y )2
= ( 4x + 3y ) ( 4x - 3y )
- a2b2 - c2d2= ( ab )2 - ( cd )2
= ( ab + cd ) ( ab - cd )
- 25a2 - 16a = a ( 25a2 - 16 )
= a [ ( 5a )2- ( 4 )2]
= a ( 5a + 4 ) ( 5a - 4 )
- a4- 1 = ( a2 ) 2- (1)2
= ( a2 + 1 ) ( a2 - 1 )
= ( a2 + 1 ) ( a + 1 ) ( a - 1 )
- ( a + b )2 - c2 = ( a + b + c ) ( a + b - c )
- a2- ( b - c )2 = ( a )2 - ( b - c )2
= ( a + b - c ) ( a - b + c )
- 4a2 + 4ab + b2 - c2 = ( 2a )2 + 2 ( 2a ) ( b ) + ( b )2 - c2
= ( 2a + b )2 - ( c )2
= ( 2a + b + c ) ( 2a + b - c )
- a2 - b2 - c2- 2bc = a2 - ( b2 + c2 + 2bc )
= ( a )2 - ( b + c )2
= ( a + b + c ) ( a - b - c )
- a2 – b2 - 4c2 + 4bc = a2- ( b2+ 4c2 - 4bc )
= ( a )2- ( b - 2c )2
= ( a + b - 2c ) ( a - b + 2c )
- x4 + 324 = ( x )2 + (18)2 + 2 ( x )2 (18) - 36x2
= ( x2 + 18 )2 - ( 6x )2
= ( x2 + 18 + 6x ) ( x2 + 18 - 6x )
= ( x2 + 6x + 18 ) ( x2 - 6x + 18 )
- 4a4 + 81 = ( 2a2 )2 + (9)2 + 2( 2a2 ) (9) -36a2
= ( 2a2 + 9 )2 - ( 6a )2
= ( 2a2 + 9 + 6a ) ( 2a2 + 9 + 6a )
= ( 2a2 - 6a + 9 ) ( 2a2 + 6a + 9 )
- 3x4 + 12 = 3 [ x4 + 4 ]
= 3 [ ( x2 )2 + (2)2 + 2 ( x2 ) (2) - 4x2 ]
= 3 [ ( x2 + 2 )2 - ( 2x )2 ]
= 3 ( x2 + 2x + 2 ) ( x2 - 2x + 2 )
- x4 + x2 + 1 = ( x2 )2 + (1)2 + 2 ( x2 ) (1) - x2
= ( x2 + 1 )2 - (x)2
= ( x2 + x + 1 ) ( x2 - x + 1 )