-       When dividing polynomials, the degree of the quotient is equal to the difference between the degrees of the
 dividend and the divisor.
 
-      Divisor) Dividend (quotient
 ------------
 Remainder
     Dividend = Divisor ∗ quotient + remainder  
-      If terms are missing in the dividend or divisor, leave spaces and treat them as terms with the coefficient zero.     
   We have observed that in the multiplication of polynomials, the degree of the product equals the sum of the
 degrees of the multiplicand and the multiplier.  
  
       When dividing polynomials, the degree of the quotient is equal to the degree of the dividend minus the degree of
 the divisor. The remainder may be zero or its degree is at least one less than that of the divisor. 
  
               Explaining Division of Polynomials:
  -      Divide the first term of the dividend by the first term of the divisor, i.e., x3 + x = x2. This is the first term of the
 quotient.
       x3(x + 2) = x2 + 2x2          Write this under the dividend as shown, and subtract. We get a new dividend.  
 
  -       The first term of the new dividend is x2.           x2 + x = x        Write this as the second term of the quotient.          x(x + 2) = x2 + 2x. Write this under the dividend and subtract. You get a new dividend again.  
 
 -         The first term of the new dividend is -4x.          -4x + x = -4. -4 is the third term of the quotient.       -4(x + 2) = -4x -8   
     Write this under the new dividend and subtract. 3 is left over.  
  
          We stop the process as the remainder's degree is less than that of the divisor's. 
  
       Quotient x2 + x - 4, remainder 3.    
  
         As in the case of natural numbers, the division algorithm, namely dividend = divisor  quotient + remainder, can 
   be used to verify our computations.   
  
        Therefore,    
  
         (x + 2) (x2 + x - 4) + 3 = x3 + 3x2 - 2x - 5.  
  
       If terms are missing in the dividend or divisor, leave spaces and treat them as terms with the coefficient zero.  
  
      The example explains the method of division of polynomials involving more than one variable by first arranging 
the dividend and divisor in descending powers using one of the variables, and then dividing as follows.  
  
      Example:  
  
     Divide ( x3 + x2 - 2x - 5 ) by ( x + 2 )  
  
       Here, both dividend and divisor are in descending powers of x. In the event that they are not so, write them in 
descending powers of x.  
  
                                Dividend 
  
       Divisor   x + 2 ) x3 + 3x2 - 2x - 5 (x2 + x - 4   Quotient 
  
                                x3 + 2x2  
  
                                ______________ 
  
                                        x2 - 2x 
  
                                        x2+ 2x 
  
                                ______________ 
  
                                                - 4x - 5
  
                                                - 4x - 8 
  
                                   ______________ 
  
                                                            3   Remainder. 
  
                    Try these questions   
  -        Divide ( x3- 5 x2+ 11x - 10) by ( x - 2 )     Answer: Dividend      Divisor x - 2) x3 - 5x2+ 11x - 10 (x2 - 3x + 5 Quotient                               - x32x2                                  __________________                                      -3x2 + 11x                                       3x2 ± 6x                               __________________                                               5x - 10                                               -5x 10                                  __________________                                                          0 Remainder  
    Verification:        Dividend = Divisor ∗Quotient + Remainder                    = ( x - 2 ) ∗( x2 - 3x + 5 ) + 0                     = x3 - 5 x2 + 11x - 10                     = Dividend.  
  -     
   Divide ( - 2 x3 - 7 x2+ 8x + 5 ) by ( 2x - 3 )     Answer: 2x - 3) 2x3 - 7x2 + 8x + 5 (x2 - 2x + 1                              -2x3 3x2                                _________________                                      - 4 x2 + 8x                                       4 x2 ± 6x                                   _________________                                             2x + 5                                              -2x  3                                _________________                                                           8     Verification:         ( 2x -3 ) ( x2 -2x + 1 ) + 8 = 2x ( x2 -2x + 1 ) -3 ( x2 -2x + 1 ) + 8                    = 2x3 - 4x2+ 2x - 3x2 + 3 + 6x - 3 + 8                      = 2x3 - 7x2 + 8x + 5                     = Dividend.  
   
   
  -      Divide ( x4 + 0x3 - 4 x2 + 13x - 4 ) by ( x2- 2x + 3 )     Answer: x2 - 2x + 3) x4 + 0x3  - 4x2 + 13x - 4 (x2 + 2x - 3                                - x4 2x3 ± 3x2                             _____________________                                       2x3 - 7x2 + 13x                                      -2x3 4x2 ± 6x                                 ____________________                                             - 3x2 + 7x - 4                                              3x2 ± 6x 9                                                    ____________________                                                          x + 5  
   Verification:        ( x2 - 2x + 3 ) ( x2 + 2x - 3 ) + ( x + 5 )                     = x4+ 2 x3 - 3 x2 - 2 x3 - 4 x2 + 6x + 3 x2 + 6x - 9 + x + 5                     = x4 - 4 x2 + 13x - 4                    = Dividend.   
   
   
   
   
    -      Divide ( 3x4 - 8x3 + 10x2- 8x - 2 ) by ( 3x2 - 2x + 5 )       Answer:3x2 – (2x + 5) 3x4 - 8x3 + 10x2 - 8x - 2 (x2 - 2x + 1/3                              -3x4 2x3 ±  5x2                                                      ______________________                                      - 6x3 + 5x2 - 8x                                                                  6x3 ± 4x2 10x                                                    ______________________                                                                                          x2 + 2x - 2                                                                                           x2 (2/3)x ± 5/3                                 ______________________                                                                                                              (8/3)x -11/3 
    Verification:         ( 3x2- 2x + 5 ) ( x2- 2x + 1/3 ) + (8x)/3 - 11/3                    = 3x4- 6x3+ x2 - 2x3 + 4x2- (2x)/3 + 5x2- 10x + 5/3+ (8x)/3 - 11/3                   = 3x4- 8x3+ 10x2 - 8x - 2                        = Dividend.  
   
   
   
   
   
   
   
  -      Divide ( 4x4 - 8x3 + 9x2 + 3x - 7 ) by ( 2 x2 - x - 2 )       Answer: 2x2 - x - 2 ) 4x4 - 8x3 + 9x2 + 3x - 7 (2x2 - 3x + 5                              -4x4 2x3 4x2                                                      ______________________                                      - 6x3 + 13 x2 + 3x                                      6x3 ± 3 x2 ± 6x                                                    ______________________                                              10 x2 - 3x - 7                                               -10 x2 5x 10                                 ______________________                                                           2x + 3 
    Verification:        ( 2x2- x - 2 ) ( 2x2 - 3x + 5 ) + 2x + 3                    = 4x4- 6x3 + 10x2 - 2x3 + 3x2- 5x - 4x2 + 6x -10 + 2x + 3                    = 4x4 - 8x3+ 9x2 + 3x - 7                       = Dividend.  
 -       Divide ( 8x4 - 8x3 - 10x2 + 15x + 2 ) by ( 4x2 + 2x - 3 )      Answer: 4x2 + 2x - 3) 8x4 - 8x3 - 10x2 + 15x + 2 (2 x2 - 3x + 1/2                               8x4 + 4x3 - 6x2                                  ________________________                                      - 12x3 - 4x2+ 15x                                       -12x3 - 6x2  +  9x                                  ________________________                                                   2x2 + 6x + 2                                                     2x2 +   x - 3/2                                ________________________                                                                5x + 3 1/2  
    Verification:        ( 4x2 + 2x - 3 ) ( 2x2 - 3x + 1/2 ) + 5x + 7/2                    = 8x4 - 12x3+ 2x2 + 4x3 - 6x2 + x - 6x2 + 9x - 3/2 + 5x + 7/2                     = 8x4 -8x 3- 10x2 + 15x + 2                     = Dividend.