We will now learn how to solve linear equations in three variables. The system of linear equations is generally in the form
                                        
a1x+b1 y+c1z = d1
                                        a2x+b2 y+c2z = d2
                                        a3x+b3 y+c3z = d3 
                                        
                                        To solve these equations, we select a variable, either x or y or z (usually z is chosen), and eliminate it from the system of equations. 
                                        We then obtain simultaneous linear equations in two variables x and y, which we solve as we did in section 2.3. After obtaining the solutions to x and y, we substitute these values in any one of the original equations to obtain the value of z.
                                        Consider these examples.
                                        
                                        Example 1
                                        
                                        
                                        
                                        
                                        Solve the  linear equations.
x+2y+2z=11         ----------- (1)
2x+y+z=7              ------------ (2)
3x+4y+z=14         ------------ (3)
To  eliminate z from (1), (2) and (3), we multiply equations 2 and 3 by 2.
2∗ (2x+y+z=7)
2∗ (3x+4y+z=14)
   4x+2y+2z=14        -------  (4)
   6z+8y+2z=28        -------  (5)
Subtracting  1 from 4 and 1 from 5, we get
4x+ 2y+ 2z=14
-x ± 2y ± 2z=-11
____________ 
         3x= 3
    ∴    x=3/3
           x=1
6x+ 8y + 2z =28
-x ± 2y ± 2z =-11
___________
   5x+6y = 17
Substitute  x=1 in this equation.
    5∗1+6y  = 17
           6y =17-5
           6y =12
             y  =12/6 
             y  =2
Substitute x=1, y=2 in equation 1.
   x+2y+2z  = 11
1+2 ∗2+2z  = 11
     1+4+2z = 11
             2z  = 11-5
             2z  = 6
               z  = 6/2
               z  = 3
Solution  set = {(1,2,3)}.
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        Example 2
                                        
                                        
                                        
                                        Solve the  equations
3x-4y =6z-16
4x -y -z = 5
x=3y+2(z-1) 
Rearrange  the terms to obtain the general form.
3x-4y-6z  = -16 -(1)
   4x-y-z = 5    -(2)
 x-3y-2z = -2   -(3)
We  will eliminate z from the system of equations by multiplying equations (2) and  (3) by 6 and 3, respectively. We thus obtain
6∗  (4x-y-z = 5 )
3∗ ( x-3y-2z = -2 )
or
24x-6y-6z  = 30 ---------(4)
3x-9y-6z = -6  ----------(5)
Subtracting  (1) from (4) we get
24x-6y-6z  = 30
  -3x  4y
 4y  6z  =
 6z  =  16
 16 
 
  -----------------------
21x-2y = 46 ----------(6)
Subtracting  (1) from (5) we get
3x - 9y - 6z = -6
	-3x  4y
 4y  6z  =
 6z  =  16
 16
 
      ---------------------------
       -5y = 10
          y = 10/-5
          y = -2
Substituting  y = -2 in (6) we get
21x  - 2∗(-2)  =46
      21x + 4 =46
            21x = 46-4
            21x = 42
                 x = 42/21
                 x = 2
Substituting  x = 2, y = -2 in equation (1) we get
3∗2-4∗(-2)  -6z = -16
   6 + 8 - 6z =- 16
       14 - 6z = - 16
            - 6z =  - 16-14
            - 6z =  -30
                z  = - 30/-6
                z  = 5
   ∴ x = 2, y = -2 z = 5
Solution set = {(2, -2, 5)}
 
                                        
                                        
                                        
                                        
                                        Example 3
                                        
                                        
                                        
                                        
                                        Solve the  equations. 
             
x-y/5  = 6         (1)
y-z/7 = 8         (2)
z-x/2 = 10       (3)
(1)  can be written as
x-y/5  = 6
     x = 6+y/5 
      x= (30+y)/5
Substituting  for x in equation (3) we get
  z  -1/2(30+y)/5 = 10
      z-(30+y/10) = 10
 (10z-30-y)/10 = 10
     10z - 30 - y =10x10
        10z - y - 30 =100
            10z - y  = 100+30
               10z-y  = 130            (4)
    Equation  (2) becomes
  y  -z/7 = 8
(7y-z)/7= 8
7y  - z = 8 ∗7
7y - z = 56       ------------ (5)
-y + 10z = 130   ------------(4)
7y - z = 56        ------------ (5)
Multiplying  4 by 7
7(-y  + 10z = 130)
Adding  -7y +70z = 910
                7y  - z = 56
         _______________ 
                   69z = 966
                     z  = 966/69
                     z  = 14
Substitute  z = 14 into equation (5)
7y - 14 = 56
       7y = 56 + 14
       7y = 70
        y = 70/7
∴       y  = 10
Substitute  y = 10 in equation (1)
x  -10/5 = 6
  x - 2 = 6
       x = 6+2
       x = 8
Solution  set ={( 8, 10, 14 )}
                                        
                                        
                                        
                                        
                                        
                                        Example 4
                                        
                                        
                                        
                                        Solve the  equations.
(y+z)/4  = (z+x)/3 = (x+y)/2
x  + y + z = 27
We  need to reduce these equations to a recognizable form, such as
a1x  + b1y + c1 z = d1
a2x  + b2y + c2 z = d2
a3x  + b3y + c3 z = d3
Consider  =(y+z)/4 = (z+x)/3
Cross  multiplying 3(y + z) = 4(z + x)
                          3y  + 3z = 4z + 4x
                           4x  + 4z - 3y - 3z = 0
                      ∴             4x - 3y + z =  0                (1)
Consider  (z+x)/3 = (x+y)/2
Cross  multiplying
2(z  + x) = 3(x + y)
2z + 2x = 3x + 3y
3x  + 3y - 2z - 2x = 0
         x + 3y - 2z =  0         (2)
We  now have the following equations
4x  - 3y + z = 0      (1)
 x - 3y - 2z = 0      (2)
   x + y + z = 27    (3)
We  eliminate y from these equations. Multiplying equation (3) with 3 we get
3∗ (x + y + z = 27)
3x + 3y + 3z = 81         (4)
Adding  (1) and (4) 
  4x - 3y + z = 0
3x + 3y + 3z = 81
______________
     7x +4z = 81            (5)
Adding  (1) and (2) we get 
 4x  - 3y + z = 0
  x + 3y -2z = 0
_____________
        5x- z = 0
           5x = z 
Substituting z = 5x in (5) we get 
7x  + 4 ∗5x  = 81
   7x + 20x = 81
           27x = 81
                x  = 81/27
                x = 3
z  = 5x
z = 5∗3
z = 15
Substitute  x = 3, z = 15 in equation (1)
   4x - 3y + z = 0
4∗3  - 3y +15 = 0
12 - 3y + 15 = 0 
    - 3y + 27 = 0
             -3y =  -27
                 y = -27/-3
                 y = 9
Solution  set = {( 3, 9, 15 )}
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                       Try these questions
                                        
                                         Solve the following equations
                                        
                                        
             								- 
                                            	x + 3y + 4z = 14
 x + 2y + z = 7
 2x + y + 2z = 2
 Answer
 Let x + 3y + 4z =14      (1)
 x + 2y + z = 7     (2)
 2x + y + 2z = 2    (3)
 To  eliminate z from the equations multiply (2) by 4 and (3) by 2.
 4∗ (x + 2y + z = 7)
 2∗ (2x +y +2z = 2)
 4x  + 8y + 4z = 28       (4)
 4x + 2y + 4z = 4         (5)
 Subtracting  (5) from (4)
  
 Subtracting  (1) from (4) we get
 4x  + 8y + 4z = 28
 - x ± 3y ± 4z = - 14
 -----------------------------
 3x + 5y = 14
 Substituting  y = 4 in this equation
 3x  + 5∗4  =14
 3x + 20 = 14
 3x = 14-20
 3x =- 6
 x = -6/3
 x = -2
 Substituting  x = -2 y = 4 in equation (3)
 2∗(-2)  + 4 + 2z = 2
 - + + +  2z = 2 +  2z = 2
 2z =  2
 z = 2/2
 z = 1
 Solution set = { (-2, 4, 1) }
   
                                            
                                            
                                            
                                            
                                            
                                            
                                            - x + 4y + 3z = 17
 3x + 3y + z = 16
 2x + 2y + z = 11
 Answer:  x + 4y + 3z = 17       (1)
 3x + 3y + z =  16      (2)
 2x + 2y + z =  11      (3)
 To  eliminate z from the equations multiply (2) and (3) by 3.
 3∗ ( 3x+ 3y + z = 16)
 3∗ (2x + 2y + z = 11)
 9x  + 9y + 3z = 48       (4)
 6x + 6y + 3z = 33       (5)
 Subtracting  (5) from (4)
  Subtracting  (1) from (5) we get Subtracting  (1) from (5) we get
 6x  + 6y + 3z = 33
 - x ± 4y ± 3z = -17
 ---------------------------
 5x + 2y =  16             (7)
 To  eliminate y multiply (6) by 2 and (7) by 3 and subtract
 2 (3x + 3y = 15)
 3 (5x + 2y = 16)
  
 x = -18/-9
 x = 2
 Substituting  x = 2 in (6)
 3∗2  + 3y = 15
 3y = 15-6
 3y = 9
 y = 9/3
 y = 3
 Substituting x = 2, y = 3 in equation (1)
 2  + 4 ∗3  + 3z = 17
 2 + 12 + 3z = 17
 3z  = 17 - 14
 3z  = 3
 z  = 3/3
 z  = 1
 Solution set = { (2, 3, 1) }
   
                                      - x - 2y + 3z = 2
 2x - 3y + z = 1
 3x - y + 2z = 9
                 Answer:  x - 2y + 3z = 2         (1)
 2x - 3y + z = 1         (2)
 3x - y + 2z = 9         (3)
 To  eliminate y multiply (1) by 2 and again by 3
 2(x - 2y + 3z = 2)
 2x - 4y + 6z = 4       (4)
 3(x  - 2y + 3z = 2)
 3x - 6y + 9z = 6)       (5)
 Subtracting  (2) from (4)
  
 Subtracting 3 from 5
  
 To eliminate y multiply (6) by (5) and subtract (7) from the result
 5(-y + 5z = 3) Substituting  z = 1 in (6) Substituting  z = 1 in (6)
 -y + 5 ∗1  = 3
 -y = 3-5
 -y = -2
 y = 2
 Substituting  y = 2, z = 1 in (1)
 x  - 2 ∗2  + 3 ∗1  = 2
 x - 4 + 3 =2
 x  - 1 = 2
 x  = 2+1
 x  = 3
 Solution set = { (3, 2, 1) }
     
                 
                 
                                            - 5x + 2y = 14
 y - 6z = -15
 x + 2y+z = 0
 Answer:   5x + 2y =  14          (1)
 y  - 6z = -15          (2)
 x + 2y + z = 0      (3)
 consider  (2)
 y  - 6z = -15
 y = -15 + 6z
 Substituting  y = -15+6z in (1) and (3) we get
 5x  + 2 (-15+6z) = 14
 5x - 30 + 12z = 14
 5x + 12z = 14+30
 5x + 12z = 44              (4)
 x+2  (-15+6z) + z = 0
 x - 30 + 12z + z = 0
 x  + 13z = 30          (5)
 To  eliminate x from the equations. Multiply (5) by 5 and subtracting (4) from the  result we get
 5(x  + 13z = 30)
 5x + 65z = 150
 -5x ± 12z = -44
 ------------------------
 53z = 106
 z  = 106/53
 z = 2
 Substituting  z = 2 in (5)
 x  + 13∗2  = 30
 x + 26 = 30
 x = 30 - 26
 x = 4
 Substituting  z = 2 in (2)
 y - 6 ∗2  = -15
 y = -15+12
 y = -3
 Solution set = { (4, -3, 2) }
                                      
                                      
                                      - 
                                      		 y-z / 3 = y-x / 2= 5z - 4x
 y + z = 2x + 1
 Answer: Reducing these equations to the general from of
 a1x  + b1y + c1z = d1
 a2x + b2y + c2z = d2
 a3x + b3y + c3z = d3
 Consider
 y-z/3 = y-x/2
 Cross  multiplying
 2(y-z) = 3(y-x)
 2y-2z  = 3y -3x
 2y  - 2z - 3y+3x = 0
 3x  - y - 2z = 0
 Consider
 y-x /2 = 5z-4x / 1
 y  - x = 2(5z - 4x)
 y - x = 10z - 8x
 y - x - 10z + 8x = 0
 7x + y -10z = 0
 Consider
 y + z = 2x + 1
 2x+1 - y - z = 0
 2x - y - z = -1
 We  now have the following equations.
 3x  - y - 2z = 0              (1)
 7x + y - 10z = 0              (2)
 2x - y-z =  -1            (3)
 We  can eliminate y from these equations
 Adding (1) and (2) we get
  
 Adding (2) and (3) we get
  
 To eliminate x from (4) and (5) multiply (4) by 9 and (5) by 10 and subtracting
 9(10x - 12z = 0)
 10(9x - 11z = -1)
  
 -------------------------
 2z = 10
 z = 10/2
 z = 5
 Substituting  z = 5 in (4)
 10x  - 12 ∗5  = 0
 10x - 60 = 0
 10x = 60
 x = 60/10
 x = 6
 Substituting  x = 6, z = 5 in (3)
 2∗6  - y - 5 = -1
 12 - y - 5 = -1
 7-y = -1
 - y =  -1 -7
 -y  = -8
 y  = -8/-1
 y  = 8
 Solution set = { (6, 8, 5) }