Logarithms Simple Law

Introduction

Recall the laws of exponents:

  1. xm * xn = xm+n
  2. xm/xn = xm-n
  3. (xm)n = xmn
  4. (a/b)m = am/bm

Let’s see how these laws can be used to state and prove the laws of logarithm.

Theorems on logarithms

Theorem 1:

If a ≠1 and m, n are positive real numbers then

     logamn = logam + logan

     Proof:

     Let logam = x, logan = y

            ∴  m = ax  and   ∴ n = ay

              mn = ax * ay

                    = ax + y

         logamn = x + y

                     = logam+ logan

Corollary: loga ( m n p q . . . ) = logam + logan + logap + . . .


Theorem 2:

If a ≠1 m, n are positive real numbers then

     loga(m/n) = logam – logan

 Proof:

  Let loga(a/b) = p       then (a/b) = xp       (1)

  logxa = q                 then a  = xq

  logxb = r                  then b = xr

  a/b = xq / xr = xq-r

  Since xm / xn = xm-n

  From (1) a/b = xp       xp = xq-r

     ∴ p = q-r

  i.e., logx (a/b) = logxa - logxb


Theorem 3

Logx am = mlogxa

     Proof:

     Let Logxam = p     then xp = am              ⇒    (1)

          Logxa  = q      then a = xq               ⇒    (2)

     From (1) and (2) am =  (xq)m = xqm     ⇒    (3)

     From (1) and (3) am =  xp = xqm

                           ∴  p = qm

     i.e., Logxam = m Logxa


Examples

  1. Prove that log 24 = log 6 + log 4
    Solution:
    From theorem 1, log ab = log a + log b
    Right-hand side = log 6 + log 4
                              = log 6 * 4
                              = log 24 = left-hand side

  2. Show that 3log 3 – 2log 5 = log 27/25
    Solution:
    3log 3 – 2log 5
      = log 33 – log 52      (from the theorem 3)
      = log 27 – log 25      (from the theorem 2)
      = log 27/25

Try these questions:

In each of the following problems unless stated otherwise, assume the base a = 10

  1. Prove that log xyz = log x + log y + log z
  2. Prove that log 15 = log 5 + log 3
  3. Show that log 10800 = 4log 2 + 3log 3 + 2log 5
  4. Show that log 108/605 = 2log 2 + 3log 3 – log 5 – 2log 11
  5. Show that 4log 3 + 2log 5 = log 2025

Answers to questions:

In each of the following problems unless stated otherwise, assume the base a = 10

  1. Prove that log xyz = log x + log y + log z
    Solution:
    Let log10xyz = m  ⇒ 10m = xyz    (1)
          log10x = a      ⇒ 10a = x         (2)
          log10y = b      ⇒ 10b = y         (3)
          log10z = c      ⇒ 10c = z         (4)
    from (2), (3) and (4) xyz = 10a * 10b * 10c
    ⇒xyz = 10a+b+c
    from (1) 10a = xyz
    ∴10a = 10a+b+c  ⇒ m = a + b + c
    log10 xyz = log x + log y + log z

  2. Prove that log 15 = log 5 + log 3
    Solution:
    From the theorem 1 log ab = log a + log b
    Right-hand side = log 5 + log 3
                           = Log 5 *3
                           = log 15 = left-hand side

  3. Show that log 10800 = 4log 2 + 3log 3 + 2log 5
    Solution:
    From the theorem 3 Logxam = mLogxa
                               4log 2 + 3log 3 + 2log 5
                            = log 24 + log 33 + log 52
                            = log 16 + log 27 + log 25    from the theorem 1
                            = log (16 * 27 * 25)
                            = log 10800 = left-hand side

  4. Show that log 108/605 = 2log 2 + 3log 3 – log 5 – 2log 11
    Solution:
       2log 2 + 3log 3 – log 5 –2log 11
    = log22 + log33 – log5 – log112
    = log 4 + log 27 – log 5 – log 121
    = (log 4 + log 27) – (log 5 + log 121)     from the theorem 1
    = log (4 * 27) –- log(5 *121)
    = log 108 – log 605                                  from the theorem 2
    = log 108/605 = left-hand side

  5. Show that 4log 3 + 2log 5 = log 2025
    Solution:
       4log 3 + 2log5
    = log 34 + log 52
    = log 81 + log 25
    = log 81 * 25
    = log 2025